Skillnad mellan versioner av "1.7 Lathund till Potenser Webbversion"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 47: | Rad 47: | ||
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big> | <b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big> | ||
</div> <!-- border-divblue --> | </div> <!-- border-divblue --> | ||
+ | |||
+ | |||
+ | <div class="border-divblue"> | ||
+ | == <small><b><span style="color:#931136">Grundpotensform:</span></b></small> == | ||
+ | |||
+ | ::<math> a \, \cdot \, 10\,^n \quad\; {\rm kallas\;grundpotensform\;om\;} n \; {\rm är\;heltal} \quad\; {\rm och} \quad\; 1 \leq a < 10 \; {\rm .}</math> | ||
+ | </div> | ||
Versionen från 8 augusti 2015 kl. 13.35
Genomgång Potenser | Genomgång Grundpotensform | Quiz | Övningar | Formelsamling Potenser |
Vad är en potens?
Potenslagarna
Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)
Andra potenslagen: \( \qquad\qquad\qquad\quad \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)
Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)
Lagen om nollte potens: \( \qquad\qquad\qquad\! a\,^0 \; = \; 1 \qquad\qquad \)
Lagen om negativ exponent: \( \qquad\qquad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)
Potens av en produkt: \( \qquad\qquad\;\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)
Potens av en kvot: \( \qquad\qquad\qquad \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)
Grundpotensform:
- \[ a \, \cdot \, 10\,^n \quad\; {\rm kallas\;grundpotensform\;om\;} n \; {\rm är\;heltal} \quad\; {\rm och} \quad\; 1 \leq a < 10 \; {\rm .}\]
Copyright © 2010-2015 Math Online Sweden AB. All Rights Reserved.