Skillnad mellan versioner av "3.3 Ekvationer+"

Från Mathonline
Hoppa till: navigering, sök
m (Taifun flyttade sidan 3.4 Lathund till Ekvationer till 3.3 Lathund till Ekvationer utan att lämna en omdirigering)
m
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[3.4 Ekvationer|Genomgång Ekvationer]]}}
+
{{Not selected tab|[[3.3 Ekvationer|Genomgång Ekvationer]]}}
{{Not selected tab|[[3.4 Quiz till Ekvationer|Quiz]]}}
+
{{Not selected tab|[[3.3 Quiz till Ekvationer|Quiz]]}}
{{Not selected tab|[[3.4 Övningar till Ekvationer|Övningar]]}}
+
{{Not selected tab|[[3.3 Övningar till Ekvationer|Övningar]]}}
{{Selected tab|[[3.4 Lathund till Ekvationer|Lathund]]}}
+
{{Selected tab|[[3.3 Lathund till Ekvationer|Lathund]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
|}
 
|}

Versionen från 18 juni 2017 kl. 15.03

       Genomgång Ekvationer          Quiz          Övningar          Lathund      


Vad är en ekvation?

\( \qquad \)Ekvation Obekant VL HL 350.jpg

En ekvation är en likhet mellan två uttryck,

har alltid formen VL = HL och innehåller

endast EN variabel, kallad obekant, se

exemplet ovan.

Ekvationens lösning: \( \quad\; \)
\( x \; = \; {\color{Red} 2} \)


Kontroll:     Sätt in lösningen i ekvationen.

  VL \( \, = \, 2 \, \cdot \, {\color{Red} 2} \, + \, 14 \, = \, 4 \, + \, 14 \, = \, 18 \)

  HL \( \, = \, 18 \)

  VL \( \; = \; \) HL \( \qquad \Longrightarrow \qquad \) OK

  Dvs lösningen \( \, x = {\color{Red} 2} \, \) är korrekt.

Kontroll kallas ibland även för prövning.


Övertäckningsmetoden


Exemplet ovan:

  \( 2 \, x \;\; + \; 14 \; = \; 18 \quad {\color{Red} {\rm Täck\;över\;}} 2 \, x \)

\(\quad\)
\( \, + \;\, 14 \; = \; 18 \)

  \( \;\, {\color{Red} ?} \;\;\; + \; 14 \; = \; 18 \)

  \( \;\, {\color{Red} 4} \;\;\; + \; 14 \; = \; 18 \)

  \( \;\, \Downarrow \)

  \( \, 2 \, \cdot \; x \;\; = \;\, {\color{Red} 4} \qquad\quad {\color{Red} {\rm Täck\;över\;}} x \)

  \( \, 2 \, \cdot \; \)
\( \quad \)
\( \; = \;\, 4 \)

  \( \, 2 \, \cdot \; {\color{Red} ?} \;\; = \;\; 4 \)

  \( \, 2 \, \cdot \; {\color{Red} 2} \;\; = \;\; 4 \)

  \( \quad\;\;\; \Downarrow \)

 
\( \; x \; = \; {\color{Red} 2} \)


Allmän metod


Exemplet ovan:

\[\begin{array}{rclcl} 2\,x \, + \, 14 & = & 18 & & \\ 2\,x \, + \, 14 \, {\color{Red} {- \, 14}} & = & 18 \, {\color{Red} {- \, 14}} & & \\ 2 \cdot x \, & = & 4 & & \\ \displaystyle \frac{2 \cdot x}{{\color{Red} {2}}} & = & \displaystyle \frac{4}{{\color{Red} {2}}} & & \\ x \, & = & 2 & & \end{array}\]



Mer info i genomgången  >>





Copyright © 2010-2017 Math Online Sweden AB. All Rights Reserved.