Skillnad mellan versioner av "4.5 Proportionalitet"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 32: | Rad 32: | ||
<div style="border:1px solid black;display:inline-table;margin-left: 0px;"> [[Image: 4_4_Proportionaliteta.jpg]] </div> | <div style="border:1px solid black;display:inline-table;margin-left: 0px;"> [[Image: 4_4_Proportionaliteta.jpg]] </div> | ||
− | Äpplenas prisfunktion <math> | + | Äpplenas prisfunktion <math> y = 25 x </math> beskriver <span style="color:red">proportionalitet</span> med kilopriset <math> 25 </math> som proportionalitetskonstant. |
− | Hyrbilarnas kostnadsfunktion <math> \, y = 15\,x + 40\, </math> beskriver icke-proportionalitet pga engångsavgiften 40. | + | Hyrbilarnas kostnadsfunktion <math> \, y = 15\,x + 40\, </math> beskriver <span style="color:red">icke-proportionalitet</span> pga engångsavgiften <math> 40 </math>. |
</div> | </div> | ||
Versionen från 15 maj 2020 kl. 12.09
<< Förra avsnitt | Genomgång | Övningar | Nästa avsnitt >> |
Proportionalitet är en egenskap hos vissa linjära funktioner.
När en rät linje \( \, y = k\,x + m \, \) går genom origo sägs \( \, y \, \) vara proportionellt mot \( \, x \).
Då är \( \, m = 0 \, \) och linjens lutning \( \, k \, \) kallas för proportionalitetskonstant.
När \( \, m \neq 0 \, \) dvs när den räta linjen inte går genom origo, är \( \, y \, \) inte proportionellt mot \( \, x \).
Exempel
Äpplenas prisfunktion \( y = 25 x \) beskriver proportionalitet med kilopriset \( 25 \) som proportionalitetskonstant.
Hyrbilarnas kostnadsfunktion \( \, y = 15\,x + 40\, \) beskriver icke-proportionalitet pga engångsavgiften \( 40 \).
Copyright © 2020 TechPages AB. All Rights Reserved.