Skillnad mellan versioner av "1.7 Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(137 mellanliggande versioner av samma användare visas inte)
Rad 4: Rad 4:
 
{{Selected tab|[[1.7 Potenser|Genomgång]]}}
 
{{Selected tab|[[1.7 Potenser|Genomgång]]}}
 
{{Not selected tab|[[1.7.1_Grundpotensform|Grundpotensform]]}}
 
{{Not selected tab|[[1.7.1_Grundpotensform|Grundpotensform]]}}
{{Not selected tab|[[1.7 Quiz till Potenser, ver 2|Quiz]]}}
+
{{Not selected tab|[[1.7 Quiz till Potenser|Quiz]]}}
 
{{Not selected tab|[[1.7 Övningar till Potenser|Övningar]]}}
 
{{Not selected tab|[[1.7 Övningar till Potenser|Övningar]]}}
{{Not selected tab|[[1.7 Lathund till Potenser|Lathund]]}}
+
{{Not selected tab|[[1.7 Lathund till Potenser Webbversion|Lathund]]}}
 +
| style="border-bottom:1px solid #797979"  width="100%"|  
 +
|}
 +
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #797979" width="5px" |  
 +
{{Not selected tab|[[1.6 Delbarhet, primtal och faktorisering| <<&nbsp;&nbsp;Förra avsnitt]]}}
 +
{{Not selected tab|    }}
 +
{{Not selected tab|    }}
 +
{{Not selected tab|    }}
 +
{{Not selected tab|[[1.8 Omvandling av enheter och Prefix|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
Rad 20: Rad 29:
 
</big></div>  <!-- exempel -->
 
</big></div>  <!-- exempel -->
  
 
<big>
 
Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med <b><span style="color:red">upphöjt till</span></b>.
 
 
I själva verket betyder <math> \, 2\,^{\color{Red} 3} \, </math> inte <math> \, 2 \cdot 3 \, </math> utan <math> \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, </math> som sedan förkortas till <math> \, 2\,^{\color{Red} 3} </math>.
 
</big>
 
  
 
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
 
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td><div class="border-divblue">
+
   <td>[[Image: Potens Bas Exponent_80.jpg]]</td>
<big>Exempel på potens:
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="border-divblue">
 +
<big>Potens med positiv exponent<span style="color:black">:</span>
  
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} </math>  
+
<math> \quad\;\;\; 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8</math>  
  
 
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
 
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
  
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.  
+
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.
</big></div>
+
</big></div></td>
</td>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Potens Bas Exponent_80.jpg]]</td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
Rad 46: Rad 48:
  
 
<big>
 
<big>
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <b><span style="color:red">upphöjt till</span></b><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<b><span style="color:red">potens</span></b>. <math> \, 2\, </math> heter <b><span style="color:red">basen</span></b> och <math> \, 3 \, </math> <b><span style="color:red">exponenten</span></b>.
+
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <b><span style="color:red">upphöjt till</span></b><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<b><span style="color:red">potens</span></b>. Ingredienserna är <math> \, 2\, </math> som heter <b><span style="color:red">basen</span></b> och <math> \, 3 \, </math> som heter <b><span style="color:red">exponenten</span></b>.
  
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att <math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<b><span style="color:blue">upprepad addition</span></b>]]).
+
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att<span style="color:black">:</span>
  
Därför det är fel att multiplicera <math> \, 2 \, </math> med <math> \, {\color{Red} 3} \, </math> när man ska beräkna <math> \, 2\,^{\color{Red} 3} </math>.
+
<math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv, en förkortning för upprepad multiplikation (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<b><span style="color:blue">upprepad addition</span></b>]]).
 
</big>
 
</big>
  
Rad 65: Rad 67:
  
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 +
 +
För att förstå den snabbare lösningen se [[1.7_Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]].
 
</big>
 
</big>
 
</div>  <!-- exempel1 -->
 
</div>  <!-- exempel1 -->
  
  
<big>
+
<big>Generellt:</big>
För att förstå den snabbare lösningen måste man känna till:
+
</big>
+
  
== <b><span style="color:#931136">Potenslagarna</span></b> ==
+
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
  
<big>
+
<div class="ovnE">
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> \, x \, </math> och <math> \, y \, </math> godtyckliga tal och <math> m,\,n </math> heltal (<math> n\neq 0 </math>):
+
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> med <b><span style="color:red">positiv</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
</big>
+
 
 +
:::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
 +
 
 +
:::::<big><math> \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 +
</div>
 +
 
 +
 
 +
== <b><span style="color:#931136">Potenslagarna</span></b> ==
  
  
Rad 94: Rad 103:
 
----
 
----
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
</div> <!-- border-divblue -->
+
</div>
  
  
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
+
<big>
<div class="tolv"> <!-- tolv1 -->
+
Dessa lagar gäller för potenser där baserna <math> \, a,\,b \, </math> är tal <math> \, \neq 0 \, </math> och exponenterna <math> \, x,\,y \, </math> är godtyckliga tal.
 
+
</big>
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> kan, om exponenten <math> \, {\color{Red} x} \, </math> är ett positivt heltal och basen <big><math> \, a \, </math></big> ett tal <math> \neq 0 </math>, definieras som
+
 
+
::::::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
+
  
::::::::<big><math> a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 
</div> <!-- tolv1 -->
 
  
 
<div class="exempel"> <!-- exempel2 -->
 
<div class="exempel"> <!-- exempel2 -->
Rad 143: Rad 147:
  
 
<big>
 
<big>
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger inte för negativa exponenter. Antalet multiplikationer av basen med sig själv kan inte vara negativt. Det behövs en ny definition.
+
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten <math> \, 0 \, </math>:
 +
 
 +
Antalet multiplikationer av basen med sig själv kan inte vara negativt eller <math> \, 0 \, </math>. Det behövs nya definitioner resp. slutsatser.
 
</big>
 
</big>
  
  
 
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
<div class="border-divblue">
+
<div class="exempel">
<big>Exempel på potens med negativ exponent:
+
[[Image: Hur raknar du negativa exponenter 20.jpg]]
 +
</div>
  
::<math> \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \;\; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} </math>
 
  
<b><span style="color:#931136">Potens med negativ exponent</span></b> = upprepad <b><span style="color:red">division</span></b> av <math> \, 1 \, </math> med <math> \, 2 </math>, <math> \, {\color{Red} 3} \, </math> gånger.  
+
<table>
 +
<tr>
 +
  <td><div class="ovnC">
 +
<big>Potens med negativ exponent<span style="color:black">:</span>
 +
 
 +
<math> \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
 +
 
 +
<b><span style="color:red">Invertera</span></b> potensen med positiv exponent.  
 +
 
 +
----
  
<b><span style="color:#931136">Negativ exponent</span></b> innebär att <b><span style="color:red">invertera potensen med positiv exponent</span></b>.
+
Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} \; </math>.
 
</big></div>
 
</big></div>
  
  
<div class="ovnE">
+
</td>
'''Ytterligare exempel:''' <math> \qquad\qquad\qquad </math> Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} </math>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnE">
 +
<big>Andra exempel<span style="color:black">:</span></big>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
  
Rad 167: Rad 183:
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
</div>
 
</div>
 +
</td>
 +
</tr>
 +
</table>
  
 
+
<big>Generellt:</big>
<big>
+
Från basen <math> \, 10 \, </math> i exemplet ovan går vi nu över till den allmänna basen <math> \, a \, </math> och bevisar lagen om negativ exponent generellt:
+
</big>
+
 
+
 
+
== <b><span style="color:#931136">Bevis av två [[1.7_Potenser#Potenslagarna|potenslagar]]</span></b> ==
+
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 180: Rad 193:
  
 
<div class="border-divblue">
 
<div class="border-divblue">
<b><span style="color:#931136">Lagen om negativ exponent</span></b> <math> \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \; </math>
+
===== <b><span style="color:#931136">Lagen om negativ exponent</span></b> <math> \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} </math> =====
 
</div> <!-- border-divblue -->
 
</div> <!-- border-divblue -->
  
Rad 195: Rad 208:
  
  
== <b><span style="color:#931136">Potenser med <math> \, 0 \, </math> i exponenten</span></b> ==
+
== <b><span style="color:#931136">Potenser med exponenten <math> \, 0 \, </math></span></b> ==
 +
 
 +
<big>Exempel:</big>
 +
 
 +
<div class="ovnE">
 +
<big><math> \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad </math>
 +
</big></div>
 +
 
 +
 
 +
<big>Generellt:</big>
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 201: Rad 223:
  
 
<div class="border-divblue">
 
<div class="border-divblue">
<b><span style="color:#931136">Lagen om nollte potens</span></b> <math> \quad a^0 \; = \; 1 \; </math>
+
===== <b><span style="color:#931136">Lagen om nollte potens</span></b> <math> \quad a^0 \; = \; 1 \; </math> =====
 
</div> <!-- border-divblue -->
 
</div> <!-- border-divblue -->
  
Rad 220: Rad 242:
  
  
<big>
+
<big>I båda föregående påståenden ska alltid gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och <b><span style="color:red">nollte potensen</span></b> däremellan (Potens <math> \; = \; </math> upprepad multiplikation):
+
 
 +
 
 +
Exemplet nedan ska illustrera lagen ovan genom att visa följande:
 +
 
 +
Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.
 +
 
 +
<b><span style="color:red">Nollte potensen</span></b> bildar övergången mellan positiva och negativa exponenter, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal:
 
</big>
 
</big>
 +
  
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
Rad 252: Rad 281:
  
 
<big>
 
<big>
Jämför med produkter med negativa faktorer som är en naturlig fortsättning på produkter med positiva faktorer och <b><span style="color:red">nollprodukten</span></b> däremellan (Produkt <math> \; = \; </math> upprepad addition<span style="color:black">:</span> <math> \, {\color{Red} 0} \, </math> tar över rollen av <math> \, {\color{Red} 1} </math>):
+
Jämför exemplet ovan med följande:
 
</big>
 
</big>
 +
  
 
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
 
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
Rad 282: Rad 312:
  
  
 +
<big>
 +
Som man ser är även multiplikation med negativa tal en naturlig fortsättning på multiplikation med positiva tal.
 +
 +
Multiplikation med <math> {\color{Red} 0} </math>, kallad <b><span style="color:red">nollprodukten</span></b>, bildar övergången mellan dem, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal.
 +
 +
Att <math> \, {\color{Red} 0} \, </math> tar över rollen av <math> \, {\color{Red} 1} \, </math> beror på att <math> \, 0 \, </math> är additionens enhet, medan multiplikationens enhet är <math> \, 1 \, </math>.
 +
</big>
  
  
Rad 303: Rad 340:
  
  
[[Matte:Copyrights|Copyright]] © 2010-2016 Math Online Sweden AB. All Rights Reserved.
+
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2019 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 19 januari 2022 kl. 08.49

       Genomgång          Grundpotensform          Quiz          Övningar          Lathund      
        <<  Förra avsnitt                                        Nästa avsnitt  >>      


Hur räknar du?

Hur raknar du Potenser 20.jpg \[ {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 \]

\[ \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 \]


Vad är en potens?

Potens Bas Exponent 80.jpg            

Potens med positiv exponent:

\( \quad\;\;\; 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8\)

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.


\( \, 2\,^3 \, \) läses \( \, {\color{Red} 2} \) upphöjt till\( \, {\color{Red} 3} \, \) och kallas för  potens. Ingredienserna är \( \, 2\, \) som heter basen och \( \, 3 \, \) som heter exponenten.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:

\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

För att förstå den snabbare lösningen se Potenslagarna.


Generellt:

Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)


Potenslagarna

Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Dessa lagar gäller för potenser där baserna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal.


Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \( \, 0 \, \):

Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \( \, 0 \, \). Det behövs nya definitioner resp. slutsatser.


Potenser med negativa exponenter

Hur raknar du negativa exponenter 20.jpg


Potens med negativ exponent:

\( \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \)

Invertera potensen med positiv exponent.


Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \; \).


      

Andra exempel:

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]

Generellt:

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Potenser med exponenten \( \, 0 \, \)

Exempel:

\( \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad \)


Generellt:

Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


I båda föregående påståenden ska alltid gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).


Exemplet nedan ska illustrera lagen ovan genom att visa följande:

Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.

Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Jämför exemplet ovan med följande:


Varför är \( \; 5 \cdot 0 \, = \, 0 \; \)?

\[ \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 \]
\[ \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 \]
\[ \; \boxed{{\color{Red} {5 \cdot 0 \; = \; 0}}} \]
\[ \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 \]
\[ \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 \]
\[ \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 \]
\[ \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 \]

Att \( \; {\color{Red} 0} \)-orna följer med hela tiden beror på att additionens enhet är \( \, {\color{Red} 0} \), dvs \( \, a + {\color{Red} 0} \, = \, a \).

Därför blir endast \( \, {\color{Red} 0} \, \) kvar, när vi kommer till \( \, {\color{Red} {5 \cdot 0}} \, \) då alla \( \, 5\)-or har försvunnit.


Som man ser är även multiplikation med negativa tal en naturlig fortsättning på multiplikation med positiva tal.

Multiplikation med \( {\color{Red} 0} \), kallad nollprodukten, bildar övergången mellan dem, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal.

Att \( \, {\color{Red} 0} \, \) tar över rollen av \( \, {\color{Red} 1} \, \) beror på att \( \, 0 \, \) är additionens enhet, medan multiplikationens enhet är \( \, 1 \, \).



Internetlänkar

https://www.youtube.com/watch?v=BMEOkzq3Xo4

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html






Copyright © 2019 TechPages AB. All Rights Reserved.