Skillnad mellan versioner av "Huvudsida"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
Rad 1: Rad 1:
<big>'''Välkommen till MATH ONLINE'''</big>
+
__NOTOC__
 +
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #797979" width="5px" | &nbsp;
 +
<!-- {{Not selected tab|[[http://34.248.89.132:1803/index.php?title=Startsida_Widerstr%C3%B6mska <<&nbsp;&nbsp;Startsida Widerströmska]]}} -->
 +
<!-- {{Not selected tab|[http://34.248.89.132:1805 <<&nbsp;&nbsp;Taifuns kurser på LBS]}} -->
 +
{{Not selected tab|[[Matte 1b Innehållsförteckning|Innehållsförteckning Ma1b]]}}
 +
{{Not selected tab|[[Kap_1_Taluppfattning|Kap 1 Taluppfattning]]}}
 +
{{Selected tab|[[Huvudsida|Kursbeskrivning]]}}
 +
{{Not selected tab|[[Media: Kursplan Ma1b Skolverk 2021.pdf|Centralt innehåll (Skolverket)]]}}
 +
<!-- {{Not selected tab|[[Matte 1b Planering|Planering]]}} -->
 +
{{Not selected tab|[[1.1_Om tal|Kap 1 ... Löpande lektioner ...&nbsp;&nbsp;>> ]]}}
 +
<!-- {{Not selected tab|[[Media: Skolverket kunskapskrav Matte 1b.pdf|Kunskapskrav (Betygskriterier)]]}} -->
 +
<!-- {{Not selected tab|[[Media: Formelsamling Ma1.pdf|Formelsamling Matte 1]]}} -->
 +
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 +
|}
  
MATH ONLINE är ett webbaserat digitalt läromedel som på sikt ska ersätta den traditionella läroboken.
 
  
MATH ONLINE kan användas av svenska grundskole- och gymnasieelever för att uppnå Skolverkets kursmål i Matematik samt klara av de Nationella proven.
+
<big><big><big>Välkommen till <div class="smallBox"><b><span style="color:red">Matematik 1b</span></b></div>&nbsp; i&nbsp; [http://www.mathonline.se/ <b><span style="color:blue">Math Online</span></b>] <math>-</math> ett digitalt läromedel för matematik</big></big></big>
 +
<table>
 +
<tr>
 +
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Bild till vad ar math online_350.jpg]]
 +
</td>
 +
<td> <math> \qquad\qquad\quad </math> </td>
 +
<td>[[Image: Grundpotensform 60b.jpg]]
  
MATH ONLINE omfattar det fullständiga materialet till grundskolans och gymnasiets mattekurser med teori, övningar, facit, utförliga lösningar och diagnosprov.
+
<!-- Potens_500.jpg <math> \qquad\qquad\qquad\qquad\qquad </math> <big><b>Utdrag ur avsnitt [[1.7 Potenser|1.7 Potenser]]</b></big> -->
 +
</td>
 +
</tr>
 +
</table>
  
MATH ONLINE är ingen distanskurs utan ett verktyg till lärarens förfogande för att underlätta undervisningen. På begäran kan upplägget anpassas till lärarens önskemål.
 
  
MATH ONLINE utnyttjar IT:s alla möjligheter för att göra matematiken roligare och attraktivare för ungdomar utan att gå miste om den vetenskapliga noggrannheten.
+
= <b><span style="color:#931136">Matte 1b Kursbeskrivning</span></b> =
 +
<div class="ovnE">
 +
<b>Matematik 1b</b> är en obligatorisk 100 p-kurs för gymnasiets Samhällsvetenskapsprogram (SA), Ekonomiprogram (EK),
  
MATH ONLINEs pedagogik bygger på ''teaching by example'' kombinerad med praktiska övningar ''(learning by doing)'' och är orienterad mot [http://www.skolverket.se/sb/d/2142/a/12079 Formativ bedömning].
+
Estetiska programmet (ES) och andra program som i regel läses under 1:a läsåret på gymnasium. Den passar även för vuxenutbildningen.
  
{| cellspacing="10px"
+
Kursen följer helt [http://www.skolverket.se/laroplaner-amnen-och-kurser/gymnasieutbildning/gymnasieskola/mat?tos=gy&subjectCode=mat&lang=sv <b><span style="color:blue">Skolverkets ämnesplan GY 2011</span></b>] och motsvarar i stora delar den kurs som i den gamla kursplanen hette Matematik A.
| [[Image:Fig01.gif]]
+
  
== Att komma igång med Matte A ==
+
Matematik 1b bygger på kunskaper från grundskolans kurser i matematik även om den innehåller en del repetitiva moment.
* I vänsterspalten ser du innehållet av gymnasiets Matte A-kurs uppdelat i sex kapitel.
+
 
* Där kan du navigera genom de olika avsnitten i alla kapitel, både teori och övningar.
+
Samtidigt fördjupas och vidareutvecklas kunskaperna från grundskolan och anpassas till relevanta behov inom karaktärsämnena.
* Varje avsnitt introducerar ämnets grundbegrepp med enkla förklaringar och lösta exempel.
+
 
* Till varje avsnitt finns det uppgifter indelade i tre kategorier: G-, VG- och MVG-nivå.
+
Kursen behandlar i sex kapitel matematikens mest grundläggande discipliner som aritmetik, algebra, geometri, procent, funktioner samt sannolikhets-<br>lära och statistik. För detaljerat upplägg se [[Matte 1b Innehållsförteckning|<b><span style="color:blue">innehållsförteckningen</span></b>]].
* När du gjort en övning kan du genom att klicka på länken "Svar" kontrollera ditt resultat.
+
</div>
* Genom att klicka på ytterligare en länk "Lösning" kan du få fram ett fullständigt lösningsförslag med alla mellansteg.
+
 
* Varje avsnitt avslutas med Internetlänkar till kompletterande material, ofta demos, animationer, små spel eller extraövningar.
+
 
* Varje kapitel avslutas med en sammanfattning.
+
== <b><span style="color:#931136">Att komma igång med Matte 1b kursen i&nbsp; [http://www.mathonline.se/ <span style="color:blue">Math Online</span>]</span></b> ==
* När du är klar med ett kapitel är det dags för ett diagnosprov som du kan ladda ned och genomföra.
+
<table>
* Till varje diagnosprov finns facit som du kan använda för att själv rätta ditt prov.
+
<tr>
* Ditt provresultat kan du diskutera med din lärare och få både feedback och feed-forward för att kunna vidareutveckla din mattekompetens.
+
  <td><big>
* På så sätt kan du förbereda dig det riktiga provet.
+
* &nbsp; I vänsterspalten ser du innehållet i kursen Matte 1b som du kan<br> &nbsp;&nbsp;använda för att navigera genom materialet.
 +
 
 +
* &nbsp; Kursen är indelad i sex kapitel. Varje kapitel innehåller ett antal av-<br> &nbsp;&nbsp;snitt och avslutas med ett diagnosprov samt fullständiga lösningar.
 +
 
 +
* &nbsp; Varje avsnitt börjar med en [[1.5 Tal i bråkform|<b><span style="color:blue">genomgång</span></b>]] som tar upp grundbegrepp<br> &nbsp;&nbsp;och regler som förklaras med hjälp av enkla lösta exempel.
 +
 
 +
* &nbsp; Vissa avsnitt har repeterande, fördjupande eller tillämpande under-<br> &nbsp;&nbsp;avsnitt. T.ex. är [[1.7.1_Grundpotensform|<b><span style="color:blue">Grundpotensform</span></b>]] ett tillämpande underavsnitt i<br> &nbsp;&nbsp;avsnittet [[1.7 Potenser|<b><span style="color:blue">Potenser</span></b>]].
 +
 
 +
* &nbsp; Till varje avsnitt finns det [[1.7 Övningar till Potenser|<b><span style="color:blue">övningar</span></b>]] indelad i tre kategorier: E-, C-<br> &nbsp;&nbsp;och A-nivå samt svar (facit) och fullständiga lösningar. Ex.<span style="color:black">:</span> <math> \pmb{\to} </math>
 +
 
 +
* &nbsp; När man är klar med ett kapitel är det dags för ett [[Diagnosprov i Matte 1b kap 1 Taluppfattning|<b><span style="color:blue">diagnosprov</span></b>]]<br> &nbsp;&nbsp;som ska förbereda på det riktiga provet.
 +
 
 +
* &nbsp; Till varje diagnosprov finns [[Lösningar till diagnosprov i Matte 1b kap 1 Taluppfattning|<b><span style="color:blue">fullständiga lösningar</span></b>]] som man kan<br> &nbsp;&nbsp;använda för att själv (eller låta en kompis) rätta sitt diagnosprov.
 +
</big>
 +
</td>
 +
<td><math> \qquad\quad </math></td>
 +
<td><math> \quad </math> <big><span style="color:blue">>></span> <math> \quad </math> <div class="ovnE">{{#NAVCONTENT:Exempel på en övning|1_1.7 Övning 1a}}</div></big>
 +
 
 +
 
 +
<math> \quad </math> <big><span style="color:blue">>></span> <math> \quad </math> <div class="ovnC">{{#NAVCONTENT:Exempel på övningens svar|1_1.7 Svar 1a}}</div></big>
 +
 
 +
 
 +
<math> \quad </math> <big><span style="color:blue">>></span> <math> \quad </math> <div class="ovnA">{{#NAVCONTENT:Exempel på övningens fullständiga lösning|1_1.7 Lösning 1a}}</div></big>
 +
</td>
 +
</tr>
 +
</table>
 +
 
 +
<big>
 +
* &nbsp; Diagnosprovets resultat kan diskuteras med din lärare för att få både [http://www.jisc.ac.uk/guides/feedback-and-feed-forward <b><span style="color:blue">feedback</span></b>] och [http://www.edweek.org/tsb/articles/2012/03/01/02formative.h05.html <b><span style="color:blue">feed-forward</span></b>] samt kunna vidareutveckla dina mattekunskaper.
 +
<!--
 +
* &nbsp; Alternativt kan ett digitalt provsystem med en databas av multiple choice-testprov användas som rättar automatiskt för att träna eleverna.
 +
 
 +
* &nbsp; På så sätt kan eleverna förbereda sig både lärarens riktiga prov och på det nationella provet.
 +
-->
 +
 
 +
* &nbsp; Inför det nationella provet i Matte 1b kan man förbereda sig genom att träna på [[Gammalt nationellt prov i Matte 1b|<b><span style="color:blue">gamla nationella prov</span></b>]] med fullständiga lösningar och [[Repetitionsuppgifter inför nationella provet i Matte 1b|<b><span style="color:blue">repetitionsuppgifter</span></b>]].
 +
 
 +
* &nbsp; Alla avsnitt innehåller [[1.1_Om tal#Internetl.C3.A4nkar|<b><span style="color:blue">Internetlänkar</span></b>]] till kompletterande material, ofta små videos på YouTube, demos, animationer, små spel eller extraövningar.
 +
 
 +
* &nbsp; Man kan även söka efter ett matematiskt begrepp i sökfältet <b>Sök</b> i vänsterspalten för att få fram de sidor som innehåller sökordet.
 +
</big>
 +
 
 +
 
 +
 
 +
<div class="forsmak">
 +
== <b><span style="color:#931136">Exempel på Math Online:s pedagogik</span></b> ==
 +
 
 +
<table>
 +
<tr>
 +
  <td><big><big>1. Exempelorienterad undervisning:</big></big>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<big><big>2. [[1.7_Potenser#Varf.C3.B6r_.C3.A4r_.5C.28_.5C.3B_5.5C.2C.5E0_.5C.2C_.3D_.5C.2C_1_.5C.3B_.5C.29.3F|<span style="color:blue">Varför är <math> \; 5\,^0 \, = \, 1 </math>, medan <math> \, 5 \cdot 0 \, = \, 0 \; </math>?</span>]]</big></big>
 +
 
 +
 
 +
<big><big>3. [[Varför är division med 0 inte definierad?|<span style="color:blue">Varför får man inte dividera med <math> \, 0 \, </math>?</span>]]</big></big>
 +
 
 +
 
 +
<big><big>4. [http://34.248.89.132:1800/index.php/1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F <span style="color:blue">Varför går multiplikation före addition?</span>]</big></big>
 +
 
 +
 
 +
<big><big>5. [http://34.248.89.132:1800/index.php/En_matten%C3%B6t <span style="color:blue">En mattenöt:&nbsp; Cirkel eller kvadrat?</span>]</big></big>
 +
 
 +
  </td>
 +
 
 +
  <td> <math> \quad </math> </td>
 +
 
 +
  <td><span style="color:red"><b>Ekvationer:</b></span> <math> \qquad </math> [http://34.248.89.132:1800/index.php/Flaska_med_pant <span style="color:blue">Flaska med pant</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/Att_ställa_upp_en_ekvation <span style="color:blue">Att ställa upp en ekvation</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/Lösning_till_flaska_med_pant <span style="color:blue">Lösning</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/Svar_till_flaska_med_pant <span style="color:blue">Svar</span>]
 +
 
 +
<span style="color:red"><b>Genomsnittlig förändringshastighet:</b></span> <math> \qquad </math> [http://34.248.89.132:1800/index.php/2.2_Genomsnittlig_f%C3%B6r%C3%A4ndringshastighet#Exempel_1_Marginalskatt <span style="color:blue">Marginalskatt</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/2.2_Genomsnittlig_f%C3%B6r%C3%A4ndringshastighet#Exempel_3_Oljetank <span style="color:blue">Oljetank</span>]
 +
 
 +
<span style="color:red"><b>Derivata:</b></span> <math> \qquad </math> [http://34.248.89.132:1800/index.php/2.1_Introduktion_till_derivata <span style="color:blue">Simhopp från 10 meterstorn (Elevaktivitet)</span>]
 +
 
 +
<span style="color:red"><b>Extremvärdesproblem:</b></span> <math> \qquad </math> [http://34.248.89.132:1800/index.php/3.5_Extremvärdesproblem#Exempel_1_Rektangel_i_parabel <span style="color:blue">Rektangel i parabel</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/3.5_Extremvärdesproblem#Exempel_2_Glasskiva_.28rektangel_i_triangel.29 <span style="color:blue">Glasskiva</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/3.5_Extremvärdesproblem#Exempel_3_Konservburk <span style="color:blue">Konservburk</span>] <math> \qquad </math>
 +
 
 +
<span style="color:red"><b>Diskreta funktioner:</b></span> <math> \qquad </math> [http://34.248.89.132:1800/index.php/1.5_Kontinuerliga_och_diskreta_funktioner#Exempel_3_Fibonaccis_problem <span style="color:blue">Kaniners fortplantning, även kallad Fibonaccis problem (Digital beräkning med Excel)</span>]
 +
 
 +
<span style="color:red"><b>Absolutbelopp:</b></span> <math> \qquad </math> [http://34.248.89.132:1800/index.php/1.6_Absolutbelopp#N.C3.A5gra_exempel_p.C3.A5_absolutbelopp <span style="color:blue">Några exempel på absolutbelopp</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/1.6_Absolutbelopp#Ekvationer_med_absolutbelopp <span style="color:blue">Ekvationer med absolutbelopp</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/1.6_Fördjupning_till_Absolutbelopp#Falska_r.C3.B6tter <span style="color:blue">Falska rötter</span>]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
[[Varför_är_division_med_0_inte_definierad%3F#Teoretisk_f.C3.B6rklaring|<span style="color:blue">Teoretisk förklaring</span>]] <math> \qquad\quad\;\; </math> [[Varför_är_division_med_0_inte_definierad%3F#Praktisk_f.C3.B6rklaring|<span style="color:blue">Praktisk förklaring</span>]] <math> \qquad\quad\;\; </math> [[Vad som kan hända om man ändå dividerar med 0|<span style="color:blue">Vad händer om man ändå dividerar med 0 ?</span>]]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
[http://34.248.89.132:1800/index.php/Formulering_&_ledning_för_mattenöten <span style="color:blue">Formulering & ledning</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/Lösning_till_mattenöten <span style="color:blue">Lösning</span>] <math> \qquad </math> [http://34.248.89.132:1800/index.php/Svar_till_mattenöten <span style="color:blue">Svar</span>]
 +
 
 +
</td>
 +
 
 +
</tr>
 +
</table>
 +
</div>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2023 <b><span style="color:blue">TechPages AB</span></b>. All Rights Reserved.

Nuvarande version från 15 januari 2023 kl. 18.18

       Innehållsförteckning Ma1b          Kap 1 Taluppfattning          Kursbeskrivning          Centralt innehåll (Skolverket)          Kap 1 ... Löpande lektioner ...  >>      


Välkommen till
Matematik 1b
  i  Math Online \(-\) ett digitalt läromedel för matematik
     Bild till vad ar math online 350.jpg \( \qquad\qquad\quad \) Grundpotensform 60b.jpg


Matte 1b Kursbeskrivning

Matematik 1b är en obligatorisk 100 p-kurs för gymnasiets Samhällsvetenskapsprogram (SA), Ekonomiprogram (EK),

Estetiska programmet (ES) och andra program som i regel läses under 1:a läsåret på gymnasium. Den passar även för vuxenutbildningen.

Kursen följer helt Skolverkets ämnesplan GY 2011 och motsvarar i stora delar den kurs som i den gamla kursplanen hette Matematik A.

Matematik 1b bygger på kunskaper från grundskolans kurser i matematik även om den innehåller en del repetitiva moment.

Samtidigt fördjupas och vidareutvecklas kunskaperna från grundskolan och anpassas till relevanta behov inom karaktärsämnena.

Kursen behandlar i sex kapitel matematikens mest grundläggande discipliner som aritmetik, algebra, geometri, procent, funktioner samt sannolikhets-
lära och statistik. För detaljerat upplägg se innehållsförteckningen.


Att komma igång med Matte 1b kursen i  Math Online

  •   I vänsterspalten ser du innehållet i kursen Matte 1b som du kan
      använda för att navigera genom materialet.
  •   Kursen är indelad i sex kapitel. Varje kapitel innehåller ett antal av-
      snitt och avslutas med ett diagnosprov samt fullständiga lösningar.
  •   Varje avsnitt börjar med en genomgång som tar upp grundbegrepp
      och regler som förklaras med hjälp av enkla lösta exempel.
  •   Vissa avsnitt har repeterande, fördjupande eller tillämpande under-
      avsnitt. T.ex. är Grundpotensform ett tillämpande underavsnitt i
      avsnittet Potenser.
  •   Till varje avsnitt finns det övningar indelad i tre kategorier: E-, C-
      och A-nivå samt svar (facit) och fullständiga lösningar. Ex.: \( \pmb{\to} \)
  •   När man är klar med ett kapitel är det dags för ett diagnosprov
      som ska förbereda på det riktiga provet.
  •   Till varje diagnosprov finns fullständiga lösningar som man kan
      använda för att själv (eller låta en kompis) rätta sitt diagnosprov.

\( \qquad\quad \) \( \quad \) >> \( \quad \)


\( \quad \) >> \( \quad \)


\( \quad \) >> \( \quad \)

  •   Diagnosprovets resultat kan diskuteras med din lärare för att få både feedback och feed-forward samt kunna vidareutveckla dina mattekunskaper.
  •   Alla avsnitt innehåller Internetlänkar till kompletterande material, ofta små videos på YouTube, demos, animationer, små spel eller extraövningar.
  •   Man kan även söka efter ett matematiskt begrepp i sökfältet Sök i vänsterspalten för att få fram de sidor som innehåller sökordet.


Exempel på Math Online:s pedagogik

1. Exempelorienterad undervisning:






2. Varför är \( \; 5\,^0 \, = \, 1 \), medan \( \, 5 \cdot 0 \, = \, 0 \; \)?


3. Varför får man inte dividera med \( \, 0 \, \)?


4. Varför går multiplikation före addition?


5. En mattenöt:  Cirkel eller kvadrat?

\( \quad \) Ekvationer: \( \qquad \) Flaska med pant \( \qquad \) Att ställa upp en ekvation \( \qquad \) Lösning \( \qquad \) Svar

Genomsnittlig förändringshastighet: \( \qquad \) Marginalskatt \( \qquad \) Oljetank

Derivata: \( \qquad \) Simhopp från 10 meterstorn (Elevaktivitet)

Extremvärdesproblem: \( \qquad \) Rektangel i parabel \( \qquad \) Glasskiva \( \qquad \) Konservburk \( \qquad \)

Diskreta funktioner: \( \qquad \) Kaniners fortplantning, även kallad Fibonaccis problem (Digital beräkning med Excel)

Absolutbelopp: \( \qquad \) Några exempel på absolutbelopp \( \qquad \) Ekvationer med absolutbelopp \( \qquad \) Falska rötter



Teoretisk förklaring \( \qquad\quad\;\; \) Praktisk förklaring \( \qquad\quad\;\; \) Vad händer om man ändå dividerar med 0 ?




Formulering & ledning \( \qquad \) Lösning \( \qquad \) Svar





Copyright © 2023 TechPages AB. All Rights Reserved.