Skillnad mellan versioner av "4.6 Potensfunktioner"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 65: | Rad 65: | ||
---- | ---- | ||
− | |||
− | |||
Potensekvationer löses genom <span style="color:red">rotdragning</span>. | Potensekvationer löses genom <span style="color:red">rotdragning</span>. |
Versionen från 2 februari 2020 kl. 18.49
<< Förra avsnitt | Genomgång | Övningar | Nästa avsnitt >> |
Exempel på potensfunktioner:
- \[ y \, = \, \color{Red}x\,^3 \, \]
- \[ y \, = \, 5\,\color{Red}x\,^2 \, \]
- \[ y \, = \, \sqrt{x} \, = \, \color{Red}x\,^{\frac{1}{2}} \, \]
- \[ y \, = \, \frac{4}{x} \, = \, 4\,\color{Red}x\,^{-1} \, \]
Generellt:
- \( y \, = \, C\,\color{Red}x\,^n \, \)där \( \, C \, \) och \( \, n \, \) är konstanter.
Se även Potensekvationer.
Exempel på en potensfunktion som beskriver en värdeminskning
Potensfunktionen i exemplet ovan:
- \( y \, = \, 299\,000 \, \color{Red}x\,^2 \, \) dvs \( \, C = 299\,000\) och \( \, n = 2 \, \).
Generellt:
- \( y \, = \, C\,\color{Red}x\,^n \, \)där \( \, C \, \) och \( \, n \, \) är konatanter.
Potensfunktionener ger upphov till potensekvationer när \( \, y \, \) sätts till ett värde.
Potensekvationer löses genom rotdragning.
Exempel på en potensfunktion som beskriver en lönehöjning
Potensfunktionen i exemplet ovan:
- \( y \, = \, 18\,000 \, \color{Red}x\,^2 \, \) dvs \( \, C = 18\,000\) och \( \, n = 2 \, \).
Generellt:
- \( y \, = \, C\,\color{Red}x\,^n \, \)där \( \, C \, \) och \( \, n \, \) är konatanter.
Copyright © 2019 TechPages AB. All Rights Reserved.