Skillnad mellan versioner av "4.6 Potensfunktioner"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 27: Rad 27:
  
 
<div class="border-divblue"><div class="smallBoxVariant"><math> y \, = \, C\,\color{Red}x\,^n \, </math></div> &nbsp;&nbsp; där <math> \, C \, </math> och <math> \, n \, </math> är konstanter.&nbsp;&nbsp;&nbsp;&nbsp;
 
<div class="border-divblue"><div class="smallBoxVariant"><math> y \, = \, C\,\color{Red}x\,^n \, </math></div> &nbsp;&nbsp; där <math> \, C \, </math> och <math> \, n \, </math> är konstanter.&nbsp;&nbsp;&nbsp;&nbsp;
 +
 +
Se även [[3.5_Potensekvationer|<span style="color:blue">Potensekvationer</span></b>]].
 
</div>
 
</div>
 
</big>
 
</big>
 
</div>
 
</div>
  
Se även [[3.5_Potensekvationer|<span style="color:blue">Potensekvationer</span></b>]].
 
  
 
= <b><span style="color:#931136">Exempel på en potensfunktion som beskriver en värdeminskning</span></b> =
 
= <b><span style="color:#931136">Exempel på en potensfunktion som beskriver en värdeminskning</span></b> =

Versionen från 7 februari 2020 kl. 12.23

        <<  Förra avsnitt          Genomgång          Övningar          Nästa avsnitt  >>      


Exempel på potensfunktioner:


\[ y \, = \, \color{Red}x\,^3 \, \]
\[ y \, = \, 5\,\color{Red}x\,^2 \, \]
\[ y \, = \, \sqrt{x} \, = \, \color{Red}x\,^{\frac{1}{2}} \, \]
\[ y \, = \, \frac{4}{x} \, = \, 4\,\color{Red}x\,^{-1} \, \]

Generellt:

\( y \, = \, C\,\color{Red}x\,^n \, \)
   där \( \, C \, \) och \( \, n \, \) är konstanter.    

Se även Potensekvationer</b>.

</big> </div>


<b>Exempel på en potensfunktion som beskriver en värdeminskning

4 5 Vardeminskning bil.jpg


Potensfunktionen i exemplet ovan:


\( y \, = \, 299\,000 \, \color{Red}x\,^2 \, \)    dvs \( \, C = 299\,000\) och \( \, n = 2 \, \).    

Generellt:

\( y \, = \, C\,\color{Red}x\,^n \, \)
   där \( \, C \, \) och \( \, n \, \) är konstanter.    

Potensfunktioner ger upphov till potensekvationer när \( \, y \, \) sätts till ett värde:

\( 249\,000 \, = \, 299\,000 \, \color{Red}x\,^2 \qquad \) eller \( \qquad \color{Red}x\,^2 = \frac{249\,000}{299\,000}\)

Potensekvationer löses genom rotdragning.


Exempel på en potensfunktion som beskriver en lönehöjning

3 5 Anv Potensekv Oscars lon.jpg


Potensfunktionen i exemplet ovan:


\( y \, = \, 18\,000 \, \color{Red}x\,^2 \, \)    dvs \( \, C = 18\,000\) och \( \, n = 2 \, \).    

Generellt:

\( y \, = \, C\,\color{Red}x\,^n \, \)
   där \( \, C \, \) och \( \, n \, \) är konstanter.    

Potensfunktioner ger upphov till potensekvationer när \( \, y \, \) sätts till ett värde:

\( 24\,500 \, = \, 18\,000 \, \color{Red}x\,^2 \qquad \) eller \( \qquad \color{Red}x\,^2 = \frac{24\,500}{18\,000}\)

Potensekvationer löses genom rotdragning.







Copyright © 2019 TechPages AB. All Rights Reserved.