Skillnad mellan versioner av "3.3 Ekvationer 2 kolumner"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 36: Rad 36:
 
                                         x \,        & = & 2                                        &          &
 
                                         x \,        & = & 2                                        &          &
 
           \end{array}</math>
 
           \end{array}</math>
 
::<math>\begin{array}{rclcl} n \, + \, (n + 1) & = & 185 &          &          \\
 
                            n \, + \,  n + 1  & = & 185 &          &          \\
 
                                2\,n \, + \, 1 & = & 185 & \qquad | & - \, 1  \\
 
                                          2\,n & = & 184 & \qquad | & / \,\, 2 \\
 
                                            n & = & 92  &          &
 
        \end{array}</math>
 
 
</div>
 
</div>
  

Versionen från 2 maj 2016 kl. 23.38

       Genomgång          Quiz          Övningar          Lathund      


Varför ekvationer?

Ex.:

Kalle köper en flaska dryck som kostar \( \, 18 \, \) kr med pant.
Drycken (innehållet) kostar \( \, 14 \, \) kr mer än panten (flaskan).
Hur mycket kommer Kalle att få för panten när han lämnar tillbaka flaskan?

Lösning med ekvation: \( \quad\;\; x \; = \; {\rm flaskans\;pris} \)

\[ \;\; x \, + \, 14 \; = \; {\rm dryckens\;pris} \]
\[\begin{array}{rclcl} x \, + \, (x \, + \, 14) & = & 18 & & \\ x \, + \, x \, + \, 14 & = & 18 & & \\ 2\,x \, + \, 14 & = & 18 & \qquad | & {\color{Red} {- \, 14}} \\ 2\,x \, + \, 14 \, {\color{Red} {- \, 14}} & = & 18 \, {\color{Red} {- \, 14}} & & \\ 2\,x \, & = & 4 & \qquad | & {\color{Red} {/ \; 2}} \\ \displaystyle \frac{2\,x}{{\color{Red} {2}}} & = & \displaystyle \frac{4}{{\color{Red} {2}}} & & \\ x \, & = & 2 & & \end{array}\]

Skrivsättet \( \quad | \quad {\color{Red} {- \, 14}} \quad\!\) betyder att \( \, 14 \, \) ska subtraheras från ekvationens båda led.

Skrivsättet \( \quad | \quad {\color{Red} {/ \; 2}} \quad\;\; \) betyder att ekvationens båda led ska divideras med \( \, 2 \, \).


Svar:     Kalle kommer att få \( \, 2 \; {\rm kr} \, \) för panten när han lämnar tillbaka flaskan.



Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med upphöjt till.

Hjärnan associerar \( \, 2 \, \) och \( \, 3 \, \) blind till multiplikationstabellen och ger \( \, 6 \) vilket är fel.

I själva verket betyder \( \, 2\,^{\color{Red} 3} \, \) inte \( \, 2 \cdot 3 \, \) utan \( \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, \) som sedan förkortas till \( \, 2\,^{\color{Red} 3} \).

Exempel på potens:

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \]

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.

           Potens Bas Exponent 80.jpg


\( \, 2\,^3 \, \) läses \( \, {\color{Red} 2} \) upphöjt till\( \, {\color{Red} 3} \, \) och kallas för  potens. \( \, 2\, \) heter basen och \( \, 3 \, \) exponenten.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal i vanlig bemärkelse utan endast en information om att \( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv (jfr. upprepad addition).


Exempel 1

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)


För att förstå den snabbare lösningen se potenslagarna.


Potens med positiva heltalsexponenter

Potensen \( \, a\,^{\color{Red} x} \, \) kan, om exponenten \( \, {\color{Red} x} \, \) är ett positivt heltal och basen \( \, a \, \) ett tal \( \neq 0 \), definieras som

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)

Exempel 2

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen är ett exempel på den första potenslagen:


Potenslagarna

Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( \, x \, \) och \( \, y \, \) godtyckliga tal och \( m,\,n \) heltal (\( n\neq 0 \)):


Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


För enkelhets skull definierades potensbegreppet inledningsvis endast för positiva heltalsexponenter \( \, x \, \) och \( \, y \). Men potenslagarna gäller även för exponenter som är negativa eller bråktal. I formuleringen "negativ exponent" antas \( \, x > 0 \).


Exempel 3

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare med andra potenslagen:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Påstående (Lagen om nollte potens):

\( a^0 \; = \; 1 \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


Exempel på potenser med negativa exponenter

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]


Påstående (Lagen om negativ exponent, \( \, x > 0 \)):

\( a^{-x} = \displaystyle{1 \over a^x} \)

Bevis:

Påståendet kan bevisas genom att använda lagen om nollte potensen (baklänges) samt andra potenslagen:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

Vi får påståendet, fast baklänges.


Att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter med nollte potensen däremellan illustrerar följande exempel:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \;\; {\color{Red} {5^0 \; = \; 1}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \). Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Jämför med:


Varför är \( \; 5 \cdot 0 \, = \, 0 \; \)?

\[ \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 \]
\[ \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 \]
\[ \;\; {\color{Red} {5 \cdot 0 \; = \; 0}} \]
\[ \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 \]
\[ \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 \]
\[ \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 \]
\[ \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 \]

Att \( \; {\color{Red} 0} \)-orna följer med hela tiden beror på att additionens enhet är \( \, {\color{Red} 0} \), dvs \( \, a + {\color{Red} 0} \, = \, a \). Därför blir endast \( \, {\color{Red} 0} \, \) kvar, när vi kommer till \( \, {\color{Red} {5 \cdot 0}} \, \) då alla \( \, 5\)-or har försvunnit.


Internetlänkar

https://www.youtube.com/watch?v=BMEOkzq3Xo4

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html





Copyright © 2010-2016 Math Online Sweden AB. All Rights Reserved.