Skillnad mellan versioner av "4.7 Exponentialfunktioner"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 10: Rad 10:
  
  
 +
<big><b>
 
Se [[4.4_Linjära funktioner och proportionalitet|<span style="color:blue">Linjära funktioner ...</span>]].
 
Se [[4.4_Linjära funktioner och proportionalitet|<span style="color:blue">Linjära funktioner ...</span>]].
  
Rad 18: Rad 19:
  
  
<big><b>
 
 
<div class="ovnE">
 
<div class="ovnE">
 
Andra exempel på exponentialfunktioner:  
 
Andra exempel på exponentialfunktioner:  

Versionen från 7 februari 2020 kl. 10.32

        <<<  Förra avsnitt          Genomgång          Övningar          Nästa avsnitt  >>      


Se Linjära funktioner ....


Andra exempel på exponentialfunktioner:


\[ y \, = \, 3\,^\color{Red}x \, \]
\[ y \, = \, 5 \cdot 2\,^\color{Red}x \, \]
\[ y \, = \, 6 \cdot (0,15)\,^{\color{Red}x} \, \]
\[ y \, = \, \frac{4}{3\,^x} \, = \, 4 \cdot 3\,^{\color{Red}{-x}} \, \]

Generellt:

\( y \, = \, C\,a\,^\color{Red}x \, \)
   där \( \, C \, \) och \( \, a \, \) är konstanter.    


Exempel på en exponentialfunktion som beskriver en värdeökning

4 6 Exponentialfkt.jpg

Exponentialekvationer kan vi inte lösa exakt i Matte 1b. Därför:

Exponentialfunktioner1.jpg


Exponentialfunktionen i exemplet ovan:


\( y \, = \, 5\,000 \cdot (1,07)\,^\color{Red}x \, \)    dvs \( \, C = 5\,000\) och \( \, a = 1,07 \, \).    

Generellt:

\( y \, = \, C\,a\,^\color{Red}x \, \)
   där \( \, C \, \) och \( \, a \, \) är konstanter.    

Exponentialfunktioner ger upphov till Exponentialekvationer när \( \, y \, \) sätts till ett värde:

\( 10\,000 \, = \, 5\,000 \cdot (1,07)\,^\color{Red}x \qquad \) eller \( \qquad (1,07)\,^\color{Red}x \, = \, 2\)

Exponentialekvationer löses genom logaritmering (läses i Matte 2b).








Copyright © 2019 TechPages AB. All Rights Reserved.