Skillnad mellan versioner av "5.6 Implikation och ekvivalens"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 44: | Rad 44: | ||
<div class="ovnC"> | <div class="ovnC"> | ||
− | <div style="border:1px solid black;display:inline-table;margin-left: 0px;"> [[Image: | + | <div style="border:1px solid black;display:inline-table;margin-left: 0px;"> [[Image: Implikation_ekvivalens_2a.jpg]] </div> |
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Versionen från 20 februari 2020 kl. 16.46
<<< Förra avsnitt | Genomgång | Övningar |
Implikation och ekvivalens är:
- Logiska verktyg i matematisk bevisföring,
- Logiska operatorer som kan skrivas mellan två utsagor.
En utsaga är ett påstående eller en sats som kan vara sant eller falskt.
Implikation symboliseras med \( \;\; \implies \;\; \), ekvivalens med \( \;\; \iff \;\; \).
Exempel på implikation
En implikation som gäller i båda riktningar kallas för ekvivalens.
En ekvivalens är en implikation och dess omvända, dvs logisk likvärdighet.
Exempel på ekvivalens
Copyright © 2020 TechPages AB. All Rights Reserved.