Skillnad mellan versioner av "1.8 Talsystem med olika baser"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 15: Rad 15:
 
Samma <span style="color:red">koefficienter</span> med basen <math> \, 8 \, </math> ger ett annat tal<span style="color:black">:</span> <math> \qquad\quad\; {\color{Red} 7} \cdot \;\, 8\,^3\,\,+\,{\color{Red} 1}\cdot \;\, 8\,^2\,+\,{\color{Red} 4}\cdot \;\, 8\,^1\,\,+\,{\color{Red} 2}\cdot \;\, 8\,^0 \;\;\; = \; ({\color{Red} {7\,142}})_{\text{åtta}} \; = \; (3\,682)_{\text{tio}}</math>
 
Samma <span style="color:red">koefficienter</span> med basen <math> \, 8 \, </math> ger ett annat tal<span style="color:black">:</span> <math> \qquad\quad\; {\color{Red} 7} \cdot \;\, 8\,^3\,\,+\,{\color{Red} 1}\cdot \;\, 8\,^2\,+\,{\color{Red} 4}\cdot \;\, 8\,^1\,\,+\,{\color{Red} 2}\cdot \;\, 8\,^0 \;\;\; = \; ({\color{Red} {7\,142}})_{\text{åtta}} \; = \; (3\,682)_{\text{tio}}</math>
  
Resultat: Det decimala talet <math>3\,682</math> är i det oktala talsystemet <math>(7\,142)_{\text{åtta}}</math>. </big>
+
Resultat: Det decimala talet <math>3\,682</math> är i det oktala talsystemet <math>(7\,142)_{\text{åtta}}</math>.  
 +
 
 +
Fråga: Vad blir <math>7\,142</math> i det oktala talsystemet? </big>
  
 
== <b><span style="color:#931136">Omvandling från andra baser till basen <math> \, 10 \, </math></span></b> ==
 
== <b><span style="color:#931136">Omvandling från andra baser till basen <math> \, 10 \, </math></span></b> ==

Versionen från 22 september 2024 kl. 15.18

       <<  Förra avsnitt          Genomgång          Övningar          Nästa avsnitt  >>      


Det decimala talsystemet med basen \( \, 10 \, \) ger: \( \;\, \boxed{ \; {\color{Red} {7\,142}} \; = \; {\color{Red} 7}\cdot 10\,^3\,+\,{\color{Red} 1}\cdot 10\,^2\,+\,{\color{Red} 4}\cdot 10\,^1\,+\,{\color{Red} 2}\cdot 10\,^0 \; } \; = \; ({\color{Red} {7\,142}})_{\text{tio}} \)

Samma koefficienter med basen \( \, 8 \, \) ger ett annat tal: \( \qquad\quad\; {\color{Red} 7} \cdot \;\, 8\,^3\,\,+\,{\color{Red} 1}\cdot \;\, 8\,^2\,+\,{\color{Red} 4}\cdot \;\, 8\,^1\,\,+\,{\color{Red} 2}\cdot \;\, 8\,^0 \;\;\; = \; ({\color{Red} {7\,142}})_{\text{åtta}} \; = \; (3\,682)_{\text{tio}}\)

Resultat: Det decimala talet \(3\,682\) är i det oktala talsystemet \((7\,142)_{\text{åtta}}\).

Fråga: Vad blir \(7\,142\) i det oktala talsystemet?

Omvandling från andra baser till basen \( \, 10 \, \)

Uppgift: \( \, \) Skriv talet \( \, \bf{(34)_{sju}} \, \) från basen \( \, 7 \, \) till basen \( \, 10 \, \)

Talsystem med olika baser 2 500.jpg


Omvandling från basen \( \, 10 \, \) till andra baser

Exempel 1: \( \;\; \) Skriv \( \, 25 \, \) från basen \( \, 10 \, \) till andra baser, t.ex. \( \, 7 \, \), \( \, 6 \, \) och \( \, 16 \, \)

Talsystem med olika baser 1 500.jpg


Exempel 2: \( \;\; \) Skriv \( \, 19 \, \) från basen \( \, 10 \, \) till basen \( \, 2 \, \)

Omv Dec till Binart.jpg


Omvandling mellan olika baser


Talsystem med olika baser 3 500.jpg





Copyright © 2024 Lieta AB. All Rights Reserved.