1.1 Om tal
Genomgång | Övningar | Nästa avsnitt --> |
Talbegreppet
Aritmetik som är vårt första kapitel i denna kurs betyder läran om talen. Men vad är ett tal egentligen? Titta på bilderna nedan:
Självfallet är tre katter inte lika med tre hundar. Men fundera: Vad är det gemensamma hos tre katter och tre hundar?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Om vi bortser från själva katter och hundar så är det antalet tre som är gemensamt för båda mängder. Och just detta gemensamma kallas för talet 3.
Talet \( \, {\color{Red} n} \, \) kan alltså definieras som det enda gemensamma hos mängder som innehåller precis \( \, {\color{Red} n} \, \) element, dvs antalet saker och ting som finns i en mängd.
Men att definiera tal med antal är ju bara att byta ut ett okänt ord mot ett annat, vilket inte löser problemet att förstå talbegreppet. Det är i själva verket tankeprocessen bakom räknandet, som leder till talbegreppet. Att räkna antalet saker och ting i en mängd har vi lärt oss som barn. Men hur det gick till har vi antingen glömt eller aldrig brytt oss om.
Det är för att tankeprocessen bakom räknandet i regel pågår omedvetet: Vi bortser från skillnaderna mellan två mängder av objekt (katter och hundar). Kvar blir det gemensamma (talet tre) hos dem. Denna process kallas för:
Abstraktion
Olika typer av tal
Vi brukar räkna antalet saker och ting i vår omgivning med den enklaste typen av tal, de positiva heltalen:
dvs objekt antal i en mängd, t.ex. fingrarna i våra händer. Generellt är positiva tal alla tal större än \( \, 0 \, \). Till själva nollan kommer man genom att dra av två lika stora positiva tal från varandra, t.ex. \( \, 4 - 4 = 0 \, \). De positiva heltalen bildar tillsammans med \( \, 0 \, \) de s.k. naturliga talen:
Drar man av ett större naturligt tal från ett mindre, t.ex. \( \, 4 - 5 = -1 \, \) kommer man till negativa tal. De naturliga talen bildar tillsammans med de negativa talen de s.k. heltalen:
Delar man två heltal med varandra, t.ex. \( \, 1 / 3 = \displaystyle{1 \over 3} \, \) kommer man till bråktal. Heltalen bildar tillsammans med bråktalen de s.k. rationella talen: Alla rationella tal kan skrivas som bråk och därmed som decimaltal. Dock finns decimaltal som inte kan skrivas som bråk. Exempel: Drar man roten ur \( \, 2 \, \) kommer man till:
|
<div class="border-divblue"De olika taltyperna är delmängder av varandra:</div>
|
|
|
Exempel 1
Skriv talet \( \, 7\,142 \, \) som en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) gånger \( \, 10\)-potenser".
Ange även talets entals-, tiotals-, hundratals- och tusentalssiffra.
Förklara varför vårt talsystem är decimalt.
Lösning:
Om du har svårigheter att förstå skrivsättet med \( \, 10\)-potenser läs avsnittet om Potenser. Kom speciellt ihåg att \( \, 10^0 \, = \, 1 \, \) enligt potenslagarna.
Siffran \( \, 2 \, \) längst till höger är en entalssiffra eller kort ett ental och har det minsta värdet, nämligen \( \, 2 \cdot 1 = 2 \). Sedan följer de andra med stigande värden.
Nästa siffra \( \, 4 \, \) till vänster är en tiotalssiffra eller kort ett tiotal och har värdet \( \, 4 \cdot 10 = 40 \).
Nästa siffra \( \, 1 \, \) till vänster är en hundratalssiffra eller kort ett hundratal och har värdet \( \, 1 \cdot 100 = 100 \).
Siffran \( \, 7 \, \) längst till vänster är en tusentalssiffra eller kort ett tusental och har det högsta värdet, nämligen \( \, 7 \cdot 1\,000 = 7\,000 \).
I det decimala positionssystemet har varje position ett \( \, 10 \, \) gånger större värde än positionen till höger.
Exempel 2
Ange siffrornas värde i talet \( \, 312 \). Beräkna talets värde utgående från siffrornas värden.
Skriv även talet som en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) gånger \( \, 10\)-potenser".
Lösning:
Första siffran \( \, 3 \, \) är pga sin position ett hundratal och har därför värdet värdet \( \, 3 \cdot 100 \) dvs \( \, 300 \).
Siffran \( \, 1 \, \) är ett tiotal och har därför värdet \( \, 1 \cdot 10 \, \) dvs \( \, 10 \, \).
Siffran \( \, 2 \, \) är ett ental och har därför värdet \( \, 2 \cdot 1 \, \) dvs \( \, 2 \, \).
Siffran \( \, 2 \, \) är ett ental och har därför värdet \( \, 2 \cdot 1 \, \) dvs \( \, 2 \, \).
Summerar man alla siffrors värden beräknas talets värde till \( \, 300 + 10 + 2 \, = \,{\color{Red} {312}} \, \). Mera utförligt:
- \[ {\color{Red} 3} \, \cdot100 + {\color{Red} 1}\cdot10 + {\color{Red} 2}\cdot1 \,= \,{\color{Red} 3} \, \cdot 10^2 + {\color{Red} 1}\cdot 10^1 + {\color{Red} 2}\cdot 10^0 = 300 + 10 + 2 \, = \,{\color{Red} {312}} \, \]
Man säger att \( \, {\color{Red} {312}} \, \) är ett sätt \(-\) det decimala positionssystemets sätt \(-\) att representera dvs visa talets värde.
I beräkningen av talets värde i Exempel 2 har vi istället för \( \, 100 \, \) skrivit \( \, 10^2 \, \), vilket betyder \( \, 10 \cdot 10 \, \), istället för \( \, 10 \, \) skrivit \( \, 10^1 \, \) och istället för \( \, 1 \, \) skrivit \( \, 10^0 \, \). Detta för att visa att det bildas en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) gånger \( \, 10\)-potenser". Denna summa är en generell form för representation av tal i det decimala positionssystemet som har basen \( \, 10 \). På samma sätt kan i andra talsystem med andra baser talens värde beräknas \(-\) bara att basen \( \, 10 \, \) byts ut mot andra baser.
Uppgifter av typ Exempel 2 brukar formuleras kort så här:
Exempel 3
Ange talet \( \, 5\,689 \, \) som en summa av termer med \( \, 10\)-potenser.
Lösning:
- \[{\color{Red} {5\,689}}\;=\;{\color{Red} 5}\cdot1000\,+\,{\color{Red} 6}\cdot100\,+\,{\color{Red} 8}\cdot10\,+\,{\color{Red} 9}\cdot1\;=\;{\color{Red} 5}\cdot10^3\,+\,{\color{Red} 6}\cdot10^2\,+\,{\color{Red} 8}\cdot10^1\,+\,{\color{Red} 9}\cdot10^0\]
Här en uppgift av en annan typ:
Exempel 4
Siffrorna i talet \( \, 96\,038 \, \) ska flyttas så att man får ett femsiffrigt tal som ligger så nära \( \, 40\,000 \, \) som möjligt.
Lösning:
- De två siffrorna närmast \( \, 4 \, \) (första siffran i \( \, 40\,000\)) är \( \, 3 \, \) och \( \, 6 \, \).
- Om vi börjar med siffran \( \, 6 \, \) skulle den ge värdet \( \, 60\,000 \, \) som är längre bort från 40 000 än om vi börjar med 3. Detta skulle nämligen ge värdet 30 000 som är närmare \( \, 40\,000 \, \). Därför bestämmer vi oss att stanna under \( \, 40\,000 \, \), då blir den första siffran i det tal vi söker, \( \, 3 \, \). Då får vi \( \, 30\,000 \, \).
- För att komma så nära \( \, 40\,000 \, \) som möjligt tar vi som nästa siffra den största, nämligen \( \, 9 \, \). Då får vi \( \, 39\,000 \, \). Den näst största siffran är \( \, 8 \, \). Då blir det \( \, 39\,800 \, \). Slutligen är bara \( \, 6 \, \) och \( \, 0 \, \) kvar, så att det blir \( \, 39\,860 \, \).
Summa \(-\) Differens \(-\) Produkt \(-\) Kvot
De fyra räknesätten addition, subtraktion, multiplikation och division har vi lärt oss i grundskolan. De är räkneoperationer. Deras resultat kallas för:
Summa = resultat av addition:
\[ \;\; 12 \, + \, 4 \, = 16 \quad {\rm där} \quad 12 \; {\rm och} \; 4 \; {\rm är\;termer\;och} \; 16 \; {\rm summan.} \]
Differens = resultat av subtraktion:
\[ \;\; 12 \, - \, 4 \, = 8 \quad {\rm där} \quad 12 \; {\rm och} \; 4 \; {\rm är\;termer\;och} \; 8 \; {\rm differensen.} \]
Produkt = resultat av multiplikation:
\[ \;\; 12 \, \cdot \, 4 \, = 48 \quad {\rm där} \quad 12 \; {\rm och} \; 4 \; {\rm är\;faktorer\;och} \; 48 \; {\rm produkten.} \]
Kvot = resultat av division:
\[ \;\; 12 \, / \, 4 \, = 3 \quad {\rm där} \quad 12 \; {\rm är\;täljaren\;,} \; 4 \; {\rm nämnaren\;och} \; 3 \; {\rm kvoten.} \]
Internetlänkar
https://www.youtube.com/watch?v=slqBCVthYKQ
http://www.vaksalaskolan.uppsala.se/webb/matematik-spel.htm
http://www.olleh.se/start/frageprogramMaA.php
Copyright © 2011-2015 Math Online Sweden AB. All Rights Reserved.