1.3 Tal i decimalform

Från Mathonline
Version från den 27 juli 2017 kl. 17.47 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
       Genomgång Decimaltal          Avrundning & värdesiffror          Quiz          Övningar          Lathund      
        <<  Förra avsnitt                                        Nästa avsnitt  >>      


Decimaltal


Decimaltal 60a.jpg


Tiondelssiffran \( \quad\, {\color{LimeGreen} 1} \, \) har värdet \( \, {\color{Red}{0,1}} \, \).

Hundradelssiffran \( {\color{LimeGreen} 7} \, \) har värdet \( \, {\color{Red}{0,07}} \, \).

Tusendelssiffran \( \;\, {\color{LimeGreen} 8} \, \) har värdet \( \, {\color{Red}{0,008}} \, \).

\( 235 \, + \, {\color{Red}{0,1 \, + \, 0,07 \, + \, 0,008}} = \boxed{235\,{\bf{\color{Red},}}\,{\color{LimeGreen} {178}}} \)


Exempel på viktiga decimaltal


\( \displaystyle{ 0,5 \, = \, {1 \over 2} } \)

\( \displaystyle{ 0,25 \, = \, {1 \over 4} } \)

\( \displaystyle{ 0,75 \, = \, {3 \over 4} } \)

\( \qquad\quad \)

\( \displaystyle{ 0,1 \, = \, {1 \over 10} } \)

\( \displaystyle{ 0,01 \, = \, {1 \over 100} } \)

\( \displaystyle{ 0,001 \, = \, {1 \over 1000} } \)

\( \qquad\quad \displaystyle{ 0,333\,333\,\ldots \, = \, {1 \over 3} } \)

\( \qquad\quad \displaystyle{ 0,666\,666\,\ldots \, = \, {2 \over 3} } \)


Från decimaltal till bråk


Skriv \( \; 0,75 \; \) i bråkform.

\( 0,75 \, = \, \displaystyle {75 \over 100} \, = \, {15 \cdot \cancel{\color{Red} 5} \over 20 \cdot \cancel{\color{Red} 5}} \, = \, {15 \over 20} \, = \, \)

\( \qquad\; = \, \displaystyle {3 \cdot \cancel{\color{Red} 5} \over 4 \cdot \cancel{\color{Red} 5}} \, = \, = \, {3 \over 4} \)

Metoden:

1.   Skriv som bråk med \( 10\)-potens i nämnaren.

2.   Förkorta bråket så långt som möjligt.


Från bråk till decimaltal


Skriv \( \; \displaystyle{3 \over 4} \; \) som decimaltal.

\( \displaystyle {3 \over 4} \, = \, {3 \cdot {\color{Red} 5} \over 4 \cdot {\color{Red} 5}} \, = \, {15 \over 20} \, = \, {15 \cdot {\color{Red} 5} \over 20 \cdot {\color{Red} 5}} \, = \, \quad \)

\( \quad\; = \, \displaystyle {75 \over 100} \, = \, 0,75 \)

Metoden:

1.   Förläng bråket tills nämnaren blir en \( 10\)-

      potens.

2.   Skriv resultatet från 1 till decimaltal.


Periodisk decimalutveckling


Skriv \( \; 0,333\,333\,\ldots \; \) i bråkform.

Lösning:

\( 10 \; \cdot \; 0,333\,333\,\ldots \; = \; 3,333\,333\,\ldots \quad {\rm (I)} \)

\( \underline{\;1 \;\, \cdot \; 0,333\,333\,\ldots \; = \; 0,333\,333\,\ldots} \quad {\rm (II)} \)

Vi bildar \( \; {\rm (I)-(II)} \):

\( (10-1) \cdot 0,333\,\ldots = \; 3 \)

\( \quad\;\;\; 9 \quad\, \cdot \, 0,333\ldots = \; 3 \)

\( \qquad\; 0,333\,333\,\ldots \: = \: \displaystyle{3 \over 9} \; = \; {1 \cdot \cancel{\color{Red} 3} \over 3 \cdot \cancel{\color{Red} 3}} \)

\( \qquad\; 0,333\,333\,\ldots \: = \: \displaystyle{1 \over 3} \)


\( a \cdot 10\,^n \; \) kallas grundpotensform

om \( n \, \) är heltal och \( \; 1 \leq \) \( a \) \( < 10 \; \).


Dvs \( \, a \, \) mellan \( \, 1,\ldots \, \) och \( \, 9,\ldots \; \).




Copyright © 2010-2017 Math Online Sweden AB. All Rights Reserved.