5.6 Implikation och ekvivalens
Från Mathonline
Version från den 20 februari 2020 kl. 16.39 av Taifun (Diskussion | bidrag)
<<< Förra avsnitt | Genomgång | Övningar |
Implikation och ekvivalens är:
- Logiska verktyg i matematisk bevisföring,
- Logiska operatorer som kan skrivas mellan två utsagor.
En utsaga är ett påstående eller en sats som kan vara sant eller falskt.
Implikation symboliseras med \( \;\; \implies \;\; \), ekvivalens med \( \;\; \iff \;\; \).
Exempel på implikation
En implikation som gäller i båda riktningar kallas för ekvivalens.
Exempel på ekvivalens
Randvinkelsatsen
Beviset för randvinkelsatsen
Randvinkelsatsens bevis bygger i sin tur på:
- Yttervinkelsatsen.
- Satsen om att likbenta trianglars basvinklar är lika stora.
- Algebra: \( \quad a = c \quad \text{och} \quad b = d \; \implies \; a+b = c+d \)
Veckans kluring (A-uppgift)
Copyright © 2020 TechPages AB. All Rights Reserved.