5.7 Lösning till Cirkel-kvadrat problemet

Från Mathonline
Hoppa till: navigering, sök
       <<<  Förra avsnitt          Genomgång          Övningar          Lösning      


Lösning i tre streg till dagens inlämningsuppgift

Steg 1   Ta exemplet \( \, r = 4 \, \). Beräkna \( \, a = f(4) \, \). Beräkna båda figurernas areor. Vilken är större?

\( \quad\; \color{Red}{r = 4} \; \) insatt i \( \quad \)
\( \displaystyle a = f(r) \, = \, \frac{\pi}{2} \cdot \, r \)
\( \quad \) ger \( \quad \displaystyle a = f(4) = \frac{\pi}{2} \cdot \, 4 = \frac{\pi\cdot 4}{2} = 2\,\pi \, \approx \, 6,28 \quad \)
Med \( \, r = 4 \, \) och \( \, a = 6,28 \, \) beräknar vi figurernas areor:

\( \quad\; \displaystyle A_{cirkel} \, = \, \pi \cdot r^2 \, = \, \pi \cdot 4^2 \, = \, \pi \cdot 16 \, \approx \, 3,14 \cdot 16 \, = \, \underline{50,24} \)

\( \quad\; \displaystyle A_{kvadrat} \, = \, a^2 \, = \, 6,28^2 \, = \, \underline{39,44} \).

Slutsats: \( \quad \) Cirkelns area är större än kvadratens.

Steg 2   Ta flera exempel, t.ex. \( r = 2 \), \( \; r = 6 \; \) och \( \; r = 8 \). Gör samma sak som i steg 1.

\( \quad\; \color{Red}{r = 2} \; \) insatt i inramad formel i steg 1 ovan ger \( \quad \displaystyle a = f(2) = \frac{\pi}{2} \cdot \, 2 = \frac{\pi\cdot 2}{2} = \pi \, \approx \, 3,14 \quad \)

Med \( \, r = 2 \, \) och \( \, a = 3,14 \, \) beräknar vi figurernas areor:

\( \quad\; \displaystyle A_{cirkel} \, = \, \pi \cdot r^2 \, = \, \pi \cdot 2^2 \, = \, \pi \cdot 4 \, \approx \, 3,14 \cdot 4 \, = \, \underline{12,56} \)

\( \quad\; \displaystyle A_{kvadrat} \, = \, a^2 \, = \, 3,14^2 \, = \, \underline{9,86} \).

Slutsats: \( \quad \) Cirkelns area är större än kvadratens.
Med exemplen \( \; \color{Red}{r = 6} \; \) och \( \; \color{Red}{r = 8} \; \) gör man på exakt samma sätt som med \( \, \color{Red}{r = 4} \, \) och \( \, \color{Red}{r = 2} \; \)ovan.
Slutsatsen blir alltid: \( \quad \) Cirkelns area är större än kvadratens. \( \quad \) Frågan: Är det alltid så? \( \; \) Se steg 3.


Generell lösning

Steg 3   Lös uppgiften generellt med \( \, r \, \) och \( \, a \, \) som variabler. Ställ upp uttryck för areorna.

      Bilda förhållandet (kvoten) mellan figurernas areor dvs \( \, \displaystyle \frac{A_{cirkel}}{A_{kvadrat}} \, \).

      Räkna exakt dvs bibehålla \( \, \pi \, \) som bokstav och använd hela tiden bråk istället för decimaltal.

      Förenkla kvoten så långt som möjligt. Vilken figur har alltid större area?

      Är resultatet beroende av figurernas storlek, dvs av \( \, r \, \) och \( \, a \, \)?

      Ange hur många procent den ena figuren är större än den andra.

Losning 40a.jpg













Copyright © 2020 TechPages AB. All Rights Reserved.