Skillnad mellan versioner av "Praktisk förklaring"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 48: | Rad 48: | ||
</table> | </table> | ||
− | Både tabellen och grafen visar: Ju mindre <math> x\, </math> blir desto större blir <big><big><math> {1 \over x} </math></big></big>. I gränsfallet <math> x = 0\, </math> blir <big><big><math> {1 \over x} </math></big></big> oändligt stort. | + | Både tabellen och grafen visar: Ju mindre <math> x\, </math> blir desto större blir <big><big><math> {1 \over x} </math></big></big>. I gränsfallet <math> x = 0\, </math> blir <big><big><math> {1 \over x} </math></big></big> oändligt stort. |
− | <math> \ | + | Man säger: <big><big><math> {1 \over x} </math></big></big> går mot oändligheten utan att nå den någonsin, när <math> \, x\, </math> går mot <math> \, 0\, </math>. |
− | + | <math> \infty </math> är symbolen för oändligheten. Det är omöjligt att ange <math> \infty </math>. Vad man än anger så kan man alltid lägga <math> \, 1 \, </math> till det och få ett tal som är större. Så kan man hålla på i evighet. | |
− | + | Därför är <math> \infty </math> inte något tal som man kan räkna med. | |
− | <b>Slutsats:</b> <big><big><math> {\color{White} x} {1 \over 0} </math></big></big> är inget tal och | + | <b>Slutsats:</b> <big><big><math> {\color{White} x} {1 \over 0} </math></big></big> är inget tal och därmed inte definierat. |
</big> | </big> |
Versionen från 7 mars 2015 kl. 01.00
<-- Tillbaka till demosidan | Problemet | Teoretisk förklaring | Praktisk förklaring |
Istället för att mata in i din miniräknare \( \, 1 \, / \, 0-\) för då får du ERROR \(-\) dela \( 1\, \) inte direkt med \( 0\, \) utan med små tal.
Fortsätt med att låta dessa små tal bli mindre och mindre:
Både tabellen och grafen visar: Ju mindre \( x\, \) blir desto större blir \( {1 \over x} \). I gränsfallet \( x = 0\, \) blir \( {1 \over x} \) oändligt stort.
Man säger: \( {1 \over x} \) går mot oändligheten utan att nå den någonsin, när \( \, x\, \) går mot \( \, 0\, \).
\( \infty \) är symbolen för oändligheten. Det är omöjligt att ange \( \infty \). Vad man än anger så kan man alltid lägga \( \, 1 \, \) till det och få ett tal som är större. Så kan man hålla på i evighet.
Därför är \( \infty \) inte något tal som man kan räkna med.
Slutsats: \( {\color{White} x} {1 \over 0} \) är inget tal och därmed inte definierat.